Reduced-Order Modeling of Flutter and Limit-Cycle Oscillations Using the Sparse Volterra Series

نویسندگان

  • Maciej Balajewicz
  • Earl Dowell
چکیده

For the past two decades, the Volterra series reduced-order modeling approach has been successfully used for the purpose of flutter prediction, aeroelastic control design, and aeroelastic design optimization. The approach has been less successful, however, when applied to other important aeroelastic phenomena, such as aerodynamically induced limit-cycle oscillations. Similar to the Taylor series, the Volterra series is a polynomial-based approach capable of progressively approximating nonlinear behavior using quadratic, cubic, and higher-order functional expansions. Unlike the Taylor series, however, kernels of the Volterra series are multidimensional convolution integrals that are computationally expensive to identify. Thus, even though it is well known that aerodynamic nonlinearities are poorly approximated by quadratic Volterra series models, cubic and higher-order Volterra series truncations cannot be identified because their identification costs are too high. In this paper, a novel, sparse representation of the Volterra series is explored for which the identification costs are significantly lower than the identification costs of the full Volterra series. It is demonstrated that sparse Volterra reduced-order models are capable of efficiently modeling aerodynamically induced limit-cycle oscillations of the prototypical NACA 0012 benchmark model. These results demonstrate for the first time that Volterra series models are capable of modeling aerodynamically induced limitcycle oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Modeling and Detection of Limit-Cycle Oscillations Using Adaptable Linear Models

A method for modeling the flutter response of a thin winged aircraft is presented. A hybrid physical-adaptive modeling framework is proposed to separate the autoregressive and moving average flutter components. Adaptive oscillators set at the structural free-vibration modal frequencies of the wing represent the structure (the autoregressive component). The moving average filters represent signa...

متن کامل

Evaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing

In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...

متن کامل

Fast Prediction of Transonic Aeroelasticity Using Computational Fluid Dynamics by Mark Woodgate Bsc. List of Most Relevant Publications

The exploitation of computational fluid dynamics for non linear aeroelastic simulations is mainly based on time domain simulations of the Euler and NavierStokes equations coupled with structural models. Current industrial practice relies heavily on linear methods which can lead to conservative design and flight envelope restrictions. The significant aeroelastic effects caused by nonlinear aerod...

متن کامل

Limit Cycle Oscillations of Aircraft due to Flutter-Induced Drag

The present work is a continuation of earlier work by the author on the energetics of flutter. It has been shown in earlier work that the energy for flutter comes from propulsion, i.e., flutter leads to increase in drag and thus the thrust has to be increased in order for the wing to maintain instability. In reality, the thrust is not increased to maintain the speed while the wing goes into flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012